
Automatic Reordering for
Dataflow Safety of Datalog

Or how I stopped worrying about syntactic order of
execution and love greedy scheduling

�1

Mistral Contrastin Dominic Orchard Andrew Rice

The problem with 
syntactic order of execution

!2

Version 1: 
auth(User) :- hash(Pass,Hash), password(User,Pass), valid(User,Hash).

Version 2:  
auth(User) :- password(User,Pass), hash(Pass,Hash), valid(User,Hash).

‣ Datalog recap

‣ Modes, adornments & well-modedness

‣ Intra- and inter-clausal analysis

‣ Properties of the analysis

‣ Future work

!3

Datalog recap

‣ Good for deductive databases, AI, data integration,
program analysis

‣ No function symbols, unlike Prolog, e.g., no lists

‣ Negation

‣ Aggregation

‣ Extralogical predicates, e.g., IO and foreign functions

!4

‣ A set of extensional predicates and intensional predicates.  
 
pc_predecessor(“Brigitte Pientka”, “Peter Thiemann”).  
pc_predecessor(“Germán Vidal”, “Brigitte Pientka”).  
pc_predecessor(“Elvira Albert”, “Germán Vidal”).  
pc_predecessor(“Olivier Danvy”, “Elvira Albert”).  
 
ancestor(X,Y) :- pc_predecessor(X,Y).  
ancestor(X,Z) :- pc_predecessor(X,Y), ancestor(Y,Z).  
 

‣ Queries to retrieve information 
 
?- ancestor(X,“Peter Thiemann”).

Clause

Example Datalog program

!5

BodyHead
Subgoal

‣ Datalog recap

‣ Modes, adornments & well-modedness

‣ Intra- and inter-clausal analysis

‣ Properties of the analysis

‣ Future work

!6

Practical applications
require something extra

‣ Promoting a C function into a logical predicate:

!7

char* function hash(char* content);  
 
 

hash(Content, Hash).

Modes to capture static
dataflow

‣ Use + to require the variable to be bound invocation time

‣ Use ? to say you do not care if it is bound or not.

‣ Earlier predicate with mode annotation: 
hash+?(Content,Hash)

‣ Multiple implementations lead to multiple mode patterns.

!8

Adornments to capture
dynamic dataflow

‣ The binding of variables depends on the query

‣ Bound variables are marked with b and free ones with f

‣ Traditionally computed left-to-right in clause body 
 
 
Reordering changes binding pattern: 

!9

?-auth(“Rebecca”).  
authb(User) :- hash+?ff(Pass,Hash), passwordbb(User,Pass), validbb(User,Hash).  
 
 
authb(User) :- passwordbf(User,Pass), hash+?bf(Pass,Hash), validbb(User,Hash).

Well-modedness

‣ Informally, a well-moded program’s subgoals do not give
invocation errors due to insufficient argument binding.

‣ Formally, an agreement between the mode patterns and
the adornment of subgoals.

‣ Consider the two adornments of hash: 

!10

hash+?ff(Pass,Hash)❌ hash+?bf(Pass,Hash)✅

Global reordering is needed

‣ Recall the different orderings of authentication clauses 
 
authb(User) :- hash+?ff(Pass,Hash), passwordbb(User,Pass), validbb(User,Hash).  
authb(User) :- passwordbf(User,Pass), hash+?bf(Pass,Hash), validbb(User,Hash).

‣ What if it was written this way? 
 
authb(U) :- checkbf(U,P), passwordbb(U,P).  
checkbf(U,P) :- hash+?ff(P,H), validbb(U,H).

‣ Reordering the caller help well-moding the subgoals of callee! 
 
authb(U) :- passwordbf(U,P), checkbb(U,P).  
checkbb(U,P) :- hash+?bf(P,H), validbb(U,H).

!11

‣ Datalog recap

‣ Modes, adornments & well-modedness

‣ Intra- and inter-clausal analysis

‣ Properties of the analysis

‣ Future work

!12

Mode analysis in two parts

‣ Intra-clausal analysis determines an ordering constraint
for each clause based on its subgoals and known
constraints alone

‣ Inter-clausal analysis updates constraints until they
stabilise (a fixpoint is reached)

!13

Intra-clausal analysis

‣ Be greedy and schedule easy subgoals ASAP

‣ Exploit shared variables between subgoals

‣ Produce orderings using a graph construction that
encodes orderings as paths

!14

Intra-clausal example

!15

r(Y,Z) :- f+(X), g{++?,+?+}(X,Y,Z), h+(Z), i(X), j(X,W).

A =({X, Y, Z, W} 
 , { (f, {X}), (g, {X, Y}), (g, {X, Z}) 
 , (h, {Z}), (i, {}), (j, {}) } 
 , {})

A

Cost to pay

Alternatives 

& their costs

Cost paid

}

!16

r(Y,Z) :- f+(X), g{++?,+?+}(X,Y,Z), h+(Z), i(X), j(X,W).

A =({X, Y, Z, W} 
 , { (f, {X}), (g, {X, Y}), (g, {X, Z}) 
 , (h, {Z}), (i, {}), (j, {}) } 
 , {})

B =({Y, Z}, {(f, {}), (g, {Y}), (g, {Z}), (h, {Z})}, {})

A B{i,j}

Cost to pay

Alternatives 

& their costs

Cost paid

}

Intra-clausal example

!17

r(Y,Z) :- f+(X), g{++?,+?+}(X,Y,Z), h+(Z), i(X), j(X,W).

A =({X, Y, Z, W} 
 , { (f, {X}), (g, {X, Y}), (g, {X, Z}) 
 , (h, {Z}), (i, {}), (j, {}) } 
 , {})

B =({Y, Z}, {(f, {}), (g, {Y}), (g, {Z}), (h, {Z})}, {})

C =({Y, Z}, {(g, {Y}), (g, {Z}), (h, {Z})}, {})A B C{i,j} {f}

Cost to pay

Alternatives 

& their costs

Cost paid

}

Intra-clausal example

!18

r(Y,Z) :- f+(X), g{++?,+?+}(X,Y,Z), h+(Z), i(X), j(X,W).

A =({X, Y, Z, W} 
 , { (f, {X}), (g, {X, Y}), (g, {X, Z}) 
 , (h, {Z}), (i, {}), (j, {}) } 
 , {})

B =({Y, Z}, {(f, {}), (g, {Y}), (g, {Z}), (h, {Z})}, {})

C =({Y, Z}, {(g, {Y}), (g, {Z}), (h, {Z})}, {})

D =({}, {(h, {})}, {Y})

A B C

D

{i,j} {f}

{g}

Cost to pay

Alternatives 

& their costs

Cost paid

}

Intra-clausal example

!19

r(Y,Z) :- f+(X), g{++?,+?+}(X,Y,Z), h+(Z), i(X), j(X,W).

A =({X, Y, Z, W} 
 , { (f, {X}), (g, {X, Y}), (g, {X, Z}) 
 , (h, {Z}), (i, {}), (j, {}) } 
 , {})

B =({Y, Z}, {(f, {}), (g, {Y}), (g, {Z}), (h, {Z})}, {})

C =({Y, Z}, {(g, {Y}), (g, {Z}), (h, {Z})}, {})

D =({}, {(h, {})}, {Y})

E =({}, {}, {Y})

A B C

D E

{i,j} {f}

{g}

{h}

Terminal node Cost to pay

Alternatives 

& their costs

Cost paid

}

Intra-clausal example

!20

r(Y,Z) :- f+(X), g{++?,+?+}(X,Y,Z), h+(Z), i(X), j(X,W).

A =({X, Y, Z, W} 
 , { (f, {X}), (g, {X, Y}), (g, {X, Z}) 
 , (h, {Z}), (i, {}), (j, {}) } 
 , {})

B =({Y, Z}, {(f, {}), (g, {Y}), (g, {Z}), (h, {Z})}, {})

C =({Y, Z}, {(g, {Y}), (g, {Z}), (h, {Z})}, {})

D =({}, {(h, {})}, {Y})

E =({}, {}, {Y})

F =({}, {(h, {})}, {Z})

A B C

D

F

E

{i,j} {f} {g}

{g}

{h}

Terminal node Cost to pay

Alternatives 

& their costs

Cost paid

}

Intra-clausal example

!21

r(Y,Z) :- f+(X), g{++?,+?+}(X,Y,Z), h+(Z), i(X), j(X,W).

A =({X, Y, Z, W} 
 , { (f, {X}), (g, {X, Y}), (g, {X, Z}) 
 , (h, {Z}), (i, {}), (j, {}) } 
 , {})

B =({Y, Z}, {(f, {}), (g, {Y}), (g, {Z}), (h, {Z})}, {})

C =({Y, Z}, {(g, {Y}), (g, {Z}), (h, {Z})}, {})

D =({}, {(h, {})}, {Y})

E =({}, {}, {Y})

F =({}, {(h, {})}, {Z})

G =({}, {}, {Z})

A B C

D

F

E

G{i,j} {f} {g} {h}

{g}

{h}

Terminal node Cost to pay

Alternatives 

& their costs

Cost paid

}

Intra-clausal example

!22

r(Y,Z) :- f+(X), g{++?,+?+}(X,Y,Z), h+(Z), i(X), j(X,W).

A =({X, Y, Z, W} 
 , { (f, {X}), (g, {X, Y}), (g, {X, Z}) 
 , (h, {Z}), (i, {}), (j, {}) } 
 , {})

B =({Y, Z}, {(f, {}), (g, {Y}), (g, {Z}), (h, {Z})}, {})

C =({Y, Z}, {(g, {Y}), (g, {Z}), (h, {Z})}, {})

D =({}, {(h, {})}, {Y})

E =({}, {}, {Y})

F =({}, {(h, {})}, {Z})

G =({}, {}, {Z})

H =({Y},{(g,{})},{Z})

A B C

D

F

H

E

G{i,j} {f} {g} {h}

{h}

{g}

{h}

Terminal node Cost to pay

Alternatives 

& their costs

Cost paid

}

Intra-clausal example

!23

r(Y,Z) :- f+(X), g{++?,+?+}(X,Y,Z), h+(Z), i(X), j(X,W).

A =({X, Y, Z, W} 
 , { (f, {X}), (g, {X, Y}), (g, {X, Z}) 
 , (h, {Z}), (i, {}), (j, {}) } 
 , {})

B =({Y, Z}, {(f, {}), (g, {Y}), (g, {Z}), (h, {Z})}, {})

C =({Y, Z}, {(g, {Y}), (g, {Z}), (h, {Z})}, {})

D =({}, {(h, {})}, {Y})

E =({}, {}, {Y})

F =({}, {(h, {})}, {Z})

G =({}, {}, {Z})

H =({Y},{(g,{})},{Z})

A B C

D

F

H

E

G{i,j} {f} {g} {h}

{g}{h}

{g}

{h}

Terminal node Cost to pay

Alternatives 

& their costs

Cost paid

}

Intra-clausal example

Intra-clausal example

!24

Head predicate: r(Y,Z)

E =({}, {}, {Y}) G =({}, {}, {Z})

+? ?+⊗

r{+?,?+}(Y,Z)

Intra-clausal example:
Path extraction

!25

A B C

D

F

H

E

G{i,j} {f} {g} {h}

{g}{h}

{g}

{h}
+?

?+

Orderings of subgoals leading to ?+
r(Y,Z) :- i(X), j(X,W), f+(X), g{++?,+?+}(X,Y,Z), h+(Z).  
r(Y,Z) :- j(X,W), i(X), f+(X), g{++?,+?+}(X,Y,Z), h+(Z).  
r(Y,Z) :- j(X,W), i(X), f+(X), h+(Z), g{++?,+?+}(X,Y,Z).  
r(Y,Z) :- i(X), j(X,W), f+(X), h+(Z), g{++?,+?+}(X,Y,Z).  

Inter-clausal analysis

‣ Constraint of a predicate respects the constraint of each
of its clauses 
 
 
 
 
 
 

‣ Update the constraints for each predicate

‣ Rinse and repeat until a fixpoint is reached

!26

r(X,Y,Z) :- p{+?,?+}(X,Y), a(Z).

Intra-clausal analysis

r{+??,?+?}(X,Y,Z)

r(X,Y,Z) :- q+(Z), b(X,Y).

Intra-clausal analysis

r??+(X,Y,Z)⊕

r{+?+,?++}(X,Y,Z)

‣ Datalog recap

‣ Modes, adornments & well-modedness

‣ Intra- and inter-clausal analysis

‣ Properties of the analysis

‣ Future work

!27

Sound and complete

‣ Soundness says if the algorithm finds an ordering for all
clauses, there will not be invocation errors.

‣ Completeness says if there is an ordering of subgoals
that eliminates invocation errors, the analysis will find it.

!28

Incremental analysis

‣ Datalog is interactive, do not want to recompute.

‣ Addition of rules never invalidates previous analysis.

‣ When new rules do not extend existing predicates, it
suffices to analyse just the new rules. Good for libraries.

‣ A query requires a single intra-clausal analysis round.

!29

‣ Datalog recap

‣ Modes, adornments & well-modedness

‣ Intra- and inter-clausal analysis

‣ Properties of the analysis

‣ Future work

!30

Future work

‣ User given mode annotations for intentional predicates

‣ Analysis graphs contain other useful dataflow information

‣ ⊕ and ⊗ form Martelli’s semiring suggesting analysis
might be reduce to matrix operations

‣ Inlining and similar optimisations provide further well-
moding opportunities

!31

Recap

‣ Imperative programming tries to sneak in to declarative
programming, we can do better!

‣ Well-modedness for Datalog is fully captured by
adornments and simple modes

‣ It is possible to do better than brute-force search whilst
remaining sound and complete

!32

Thanks. Questions?

!33

